Differences between maize and rice in N-use efficiency for photosynthesis and protein allocation.
نویسندگان
چکیده
The N-use efficiency for photosynthesis was higher in a C(4) plant, maize, than in a C(3) plant, rice, including rbcS antisense rice with optimal ribulose-1,5-bisphosphate carboxylase (Rubisco) content for CO(2)-saturated photosynthesis, even when photosynthesis was measured under saturating CO(2) conditions. The N cost for the C(4) cycle enzymes in maize was not large, and the lower amount of Rubisco allowed a greater N investment in the thylakoid components. This greater content of the thylakoid components as well as the CO(2) concentrating mechanism may support higher N-use efficiency for photosynthesis in maize.
منابع مشابه
Maize productivity and nutrient use efficiency in Western Kenya as affected by soil type and crop management
Low soil fertility and high weed infestation are the main culprits for the declining maize production inWestern Kenya. Technology packages to address these constraints exist, but their effectiveness is likely to be influenced by variability in soil types and farm management practices in the region. Trials were conducted during the 2008/2009 cropping seasons to investigate the nutrient use e...
متن کاملModeling radiation- and carbon-use efficiencies of maize, sorghum, and rice
A previously developed model for radiation-use efficiency (RUE) for gross photosynthesis and net carbon accumulation by wheat before anthesis [Agric. Forest Meteorol. 101 (2000) 217], with some improvement, has been applied to maize, sorghum, and rice during their vegetative period under unstressed conditions. The objective of the present study is to assess the extent to which the model can pro...
متن کاملPhotosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment.
Ribulose-1,5-bisphosphate carboxylase (Rubisco) efficiency for CO2-saturated photosynthesis was examined in leaves of rice (Oryza sativa L.). The amount of Rubisco in a leaf was calculated to be 30-55% in excess for the light-saturated rate of photosynthesis at 100 Pa CO2. Long-term exposure to CO2 enrichment decreased the amount of Rubisco protein. However, N was not reallocated from decreased...
متن کاملWithin-Leaf Nitrogen Allocation in Adaptation to Low Nitrogen Supply in Maize during Grain-Filling Stage
Nitrogen (N) plays a vital role in photosynthesis and crop productivity. Maize plants may be able to increase physiological N utilization efficiency (NUtE) under low-N stress by increasing photosynthetic rate (P n) per unit leaf N, that is, photosynthetic N-use efficiency (PNUE). In this study, we analyzed the relationship between PNUE and N allocation in maize ear-leaves during the grain-filli...
متن کاملMaize response to water, salinity and nitrogen levels: physiological growth parameters and gas exchange
A split-split-plot design with three replications in two years of 2009 and 2010 was conducted to investigate the effect of different levels of irrigation water (main plot), salinity of irrigation water (sub-plot) and nitrogen fertilizer rate (sub-subplot) on maize growth rate and gas exchange. Irrigation treatments were I1 (1.0 crop evapotranspiration (ETc)+0.25ETc as leaching), I2 (0.75I1)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 44 9 شماره
صفحات -
تاریخ انتشار 2003